AEC Conference

"CHIPS FOR BRICKS"" SUSTAINABLE DATA CENTERS

Presented by:

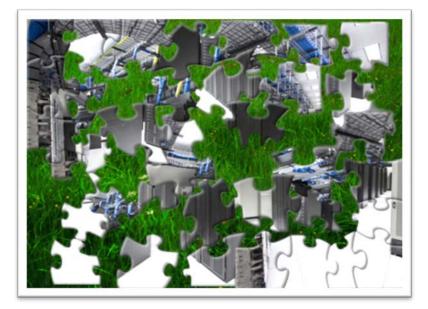
Ed Koplin, PE, CEM | X-nth & AFCO Systems Green Data Centers II - 11/9/2010

The Challenge Integrating The Digital & Physical

Outdated physical data center standards lead to:

- Excessive construction costs
- Space utilization (reduced Digital area) and
- Reduced budgets for IT equipment

Wasted energy


- Redundant systems operate at inefficient part load
- Excess construction dollars equate to unnecessary manufacturing
- Data Center energy use (PUE) becomes inefficient

Integration of Digital and Physical programs ensures:

- Sustainable data center performance
- Impressive CapEx and OpEx reductions
- Savings through facility optimization
- Budgets were re-allocated to the digital program

■ Chips for BricksTM reallocates budgets to the Digital program

The Challenge

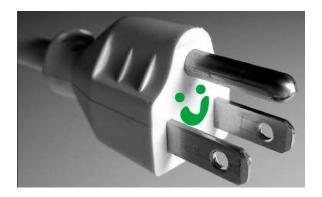
The Real Challenge

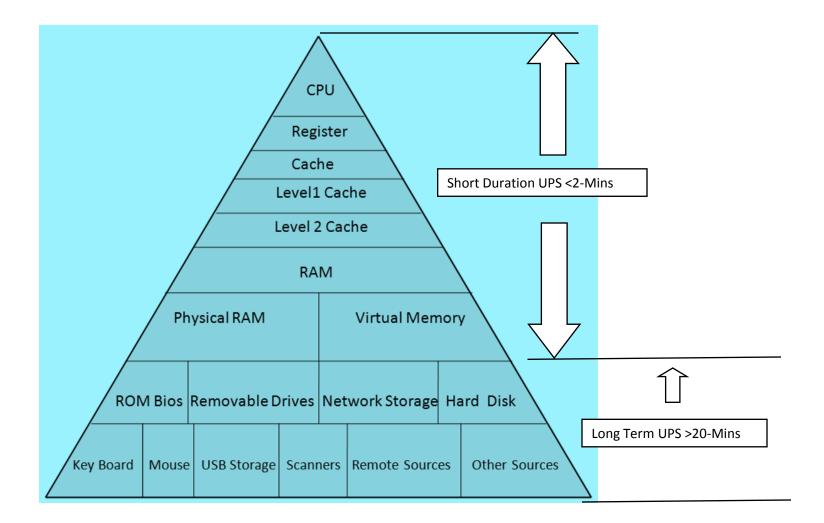
SEPARATED BY A COMMON LANGUAGE

IT Approach

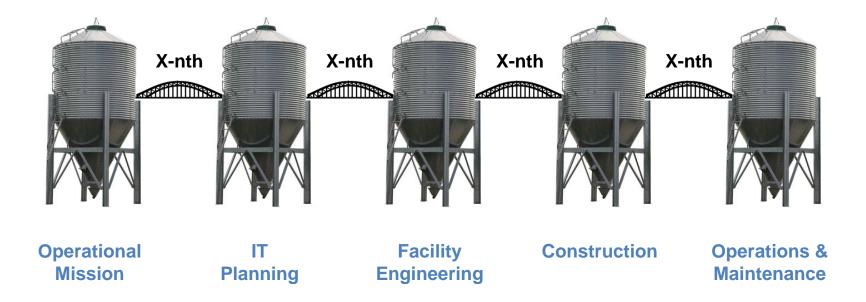
- Tier 1 = Mission Critical
- Storage is a drive
- Architecture is a system

Facility Approach


- Tier 4 = Mission Critical
- Storage is a closet
- Architecture is a building



Integrating Digital & Physical IT GAME CHANGERS MINIMIZE PHYSICAL REQUIREMENTS


- Virtualization and cloud computing
- Storage area networks
- High-bandwidth accessibility
- IT costs less now

The IT Pyramid

Bridging Silo Management Gaps

COLLABORATION MAINTAINS MISSION PURITY

Case Study #1

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

- Supercomputer processing required new data center space
- Facility budgets impacted funding for supercomputer
- Physical program was "right-sized" to preserve IT procurement allocations
- Facility budget was originally \$48 million
- Integrating Digital requirements reduced construction budgets \$25-million
- Savings re-allocated to the Digital Data Center Program

Facility Costs	Savings Reallocated to Digital Data Center	Original Facility Budgets	Final Integrated Costs
Construction Savings	\$25,186,405	\$48,307,823	\$23,121,418

Case Study #2 UNIVERSITY OF MICHIGAN

- Mission digitized one of the largest hospital systems in the US
- Stakeholder facilitation to integrate Digital with Physical requirements
- Statistical evidence reduce build costs while retaining
 - Capacity, availability and energy efficiency
 - Increased raised floor 25%
- Funds reallocated to IT systems

Facility Costs	Savings Reallocated to Digital Data Center	Original Facility Budgets	Final Integrated Costs
Construction Savings	\$7,937,000	\$35,500,000	\$27,563,000
Post Construction	\$1,500,000	\$1,500,000	\$0
Total Savings	\$9,437,000		

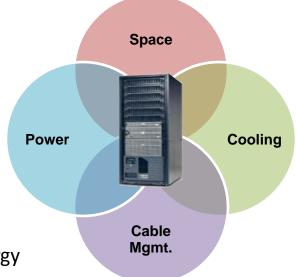
Note: Construction savings used to build IT fiber back bone, during rather after construction.

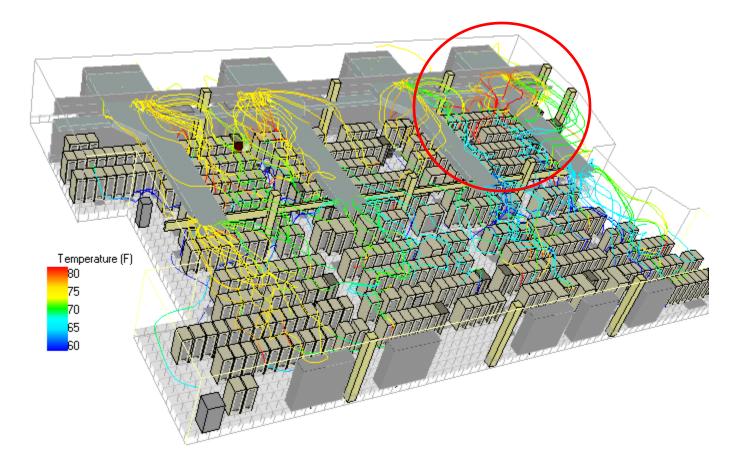
Case Study #3 CITIGROUP

- Consolidation of 14 data centers 450,000 SF of raised floor
- Construction of three mega Data Centers \$220 million each
- Live renovation, instead of mothballing one Data Center
 - Construction proceeded without disrupting processing
 - Energy efficiency improved to modern standards
 - Doubled capacity while increasing Fault Tolerance

Facility Costs	Savings Reallocated to Digital Data Center	Original Facility Budgets	Final Integrated Costs
Construction Savings	\$152,000,000	\$220,000,000	\$68,000

Common Threads


CASE STUDY FINDINGS: REDUNDANCIES & MORE


How much redundancy is too much?

Common Threads THE JUNCTION

- Enclosures essential for complete integration
- Integral to full DC systems design
- All resources meet at the enclosure
 - Power
 - Cooling/Airflow
 - Cabling/networking
 - Monitor/control/security/structure
 - Raising the temperatures, with control, saves energy

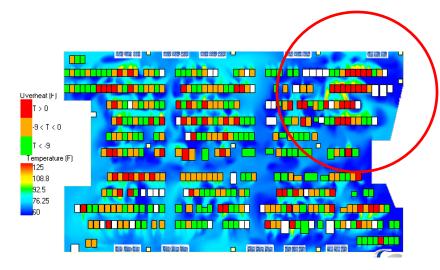
Common Threads CFD MODELING RESULTS

Common Threads EFFECT OF ENCLOSURES

T > 0

T < -9

125

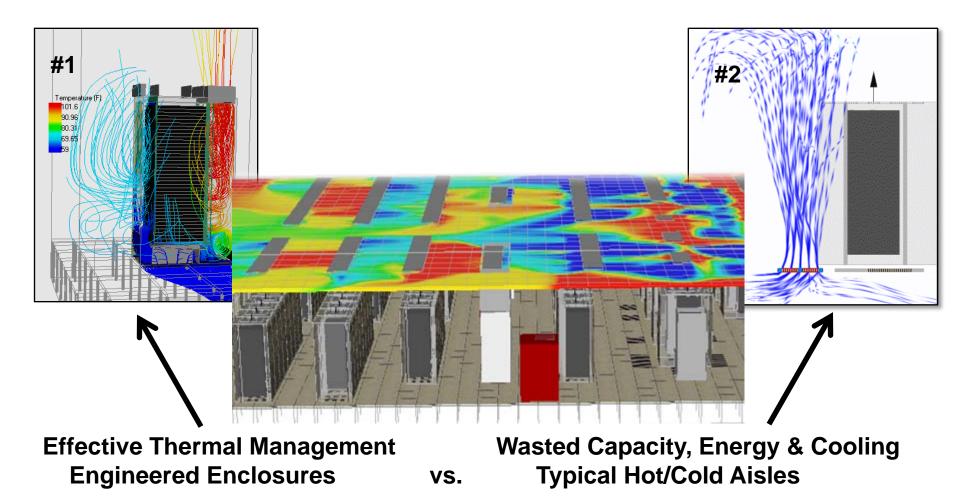

108.8

92.5

76.25

-9 < T < 0

Temperature (F)



Hot-spots in an inefficient, too cold Data Center.

Engineered enclosures manage cooling distribution.

DIFFERENT OUTCOMES ... SAME FACILITY

Common Threads SAME ROOM – TWO COOLING METHODS

Note: Cold (blue) air returning to the ceiling is wasted capacity, yellow/red is expected

A PROBLEM WELL DEFINED SEEKS ITS OWN SOLUTION

